Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.834
Filtrar
1.
Immunol Res ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630408

RESUMO

Massive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of ß-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-ß-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.

2.
Front Immunol ; 15: 1331846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605970

RESUMO

Foxp3+ TREG cells have been at the focus of intense investigation for their recognized roles in preventing autoimmunity, facilitating tissue recuperation following injury, and orchestrating a tolerance to innocuous non-self-antigens. To perform these critical tasks, TREG cells undergo deep epigenetic, transcriptional, and post-transcriptional changes that allow them to adapt to conditions found in tissues both at steady-state and during inflammation. The path leading TREG cells to express these tissue-specialized phenotypes begins during thymic development, and is further driven by epigenetic and transcriptional modifications following TCR engagement and polarizing signals in the periphery. However, this process is highly regulated and requires TREG cells to adopt strategies to avoid losing their regulatory program altogether. Here, we review the origins of tissue-resident TREG cells, from their thymic and peripheral development to the transcriptional regulators involved in their tissue residency program. In addition, we discuss the distinct signalling pathways that engage the inflammatory adaptation of tissue-resident TREG cells, and how they relate to their ability to recognize tissue and pathogen-derived danger signals.


Assuntos
Autoimunidade , Linfócitos T Reguladores , Diferenciação Celular , Timo/metabolismo , Fatores de Transcrição Forkhead/metabolismo
3.
J Clin Med ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610912

RESUMO

Background: Patients with end-stage kidney disease (ESKD) have altered immunity. Patients on hemodialysis (HD) present a coexistence of immunodeficiency and activation of the immune system. We evaluated the immunophenotypic profile induced by the medium cut-off of Theranova filter during a single HD session in the same individual. Methods: This pilot observational study explored 11 patients (75 ± 8 years and 73% male). Blood samples were collected prior to (predialytic, PRE) and after 4 h (postdialytic, POST) standard HD session with a medium cut-off, polyarylethersulfone and polyvinylpyrrolidone blend, BPA-free membrane. We performed an immunophenotyping characterization by using flow cytometry. We evaluated eryptosis RBCs and HLA-DR expression on monocytes and Treg cells. Results: The percentages of eryptosis in lymphocytes (CD3+), lymphocyte T helper (CD3+ and CD4+) cells, and monocytes (CD45+ and CD14+) were similar pre- and post-HD. On the contrary, HLA-DR expression and Treg cell numbers significantly decreased after HD. Conclusions: Many studies have focused on the comparison between healthy volunteers and HD patients, but very few have focused on the changes that occur after an HD session in the same individual. With this pilot observational study, we have revealed an immunomodulation driven by HD treatment with Theranova filter. Our preliminary results can be considered to be a hypothesis, generating and stimulating further studies with better designs and larger populations.

4.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
5.
Artigo em Inglês | MEDLINE | ID: mdl-38566376

RESUMO

OBJECTIVES: Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the central nervous system. Immune cell subsets, notably T helper (Th) 17 and Th1, exert important roles in MS pathogenesis. Whereas, Treg cells modulate the disease process. Calcitriol, the active form of vitamin D, and curcumin, a bioactive compound derived from turmeric, play immunomodulatory effects relevant to autoimmune disorders, including MS. The objective of this study is to investigate the effects of calcitriol and Curcumin on Peripheral blood mononuclear cells (PBMCs) of individuals with MS. METHODS: PBMCs from twenty MS patients were isolated, cultured, and exposed to 0.004 µg/mL of calcitriol and 10 µg/mL of curcumin. The cells underwent treatment with singular or combined doses of these components to assess potential cumulative or synergistic immunomod-ulatory effects. Following treatment, the expression levels of genes and the cellular population of Treg, Th1 and Th17 were evaluated using Real-time PCR and flow cytometry. RESULTS: Treatment with curcumin and calcitriol led to a significant reduction in the expression levels of inflammatory cytokines and transcription factors related to Th1 and Th17 cells, includ-ing IFN-γ, T-bet, IL-17, and RORC. Furthermore, the frequency of these cells decreased follow-ing treatment. Additionally, curcumin and calcitriol treatment resulted in a significant upregu-lation of the FOXP3 gene expression and an increase in the frequency of Treg cells. CONCLUSION: This study demonstrates that curcumin and calcitriol can effectively modulate the inflammatory processes intrinsic to MS by mitigating the expression of inflammatory cytokines by Th1 and Th17 cells while concurrently enhancing the regulatory role of Treg cells. Moreover, the combined treatment of curcumin and calcitriol did not yield superior outcomes compared to single-dosing strategies.

6.
PeerJ ; 12: e16988, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560459

RESUMO

Background: Myeloid-derived suppressor cells (MDSCs) have crucial immunosuppressive role in T cell dysfunction in various disease processes. However, the role of MDSCs and their impact on Tregs in COPD have not been fully understood. The aim of the present study is to investigate the immunomodulatory role of MDSCs and their potential impact on the expansion and function of Tregs in COPD patients. Methods: Peripheral blood samples were collected to analyze circulating MDSCs, Tregs, PD-1/PD-L1 expression to assess the immunomodulatory role of MDSC and their potential impact on the expansion and function of Treg in COPD. A total of 54 COPD patients and 24 healthy individuals were enrolled in our study. Flow cytometric analyses were performed to identify granulocytic MDSCs (G-MDSCs), monocytic MDSCs (M-MDSCs), Tregs, and the expression of PD-1/PD-L1(L2) on MDSCs and Tregs in peripheral blood. Results: Our results revealed a significantly higher percentage of G-MDSCs and M-MDSCs (p < 0.001) in COPD patients compared to the healthy controls. Additionally, a significantly higher proportion of peripheral blood Tregs was observed in COPD patients. Furthermore, an increased expression of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) on Tregs (p < 0.01) was detected in COPD patients. The expression of PD-1 on CD4+ Tcells and Tregs, but not CD8+Tcells, was found to be increased in patients with COPD compared to controls. Furthermore, an elevated expression of PD-L1 on M-MDSCs (p < 0.01) was also observed in COPD patients. A positive correlation was observed between the accumulation of M-MDSCs and Tregs in COPD patients. Additionally, the percentage of circulating M-MDSCs is positively associated with the level of PD-1 (r = 0.51, p < 0.0001) and CTLA-4 (r = 0.42, p = 0.0014) on Tregs in COPD. Conclusion: The recruitment of MDSCs, accumulation of Tregs, and up-regulation of CTLA-4 on Treg in COPD, accompanied by an increased level of PD-1/PD-L1, suggest PD-1/PD-L1 axis may be potentially involved in MDSCs-induced the expansion and activation of Treg at least partially in COPD.


Assuntos
Células Supressoras Mieloides , Doença Pulmonar Obstrutiva Crônica , Humanos , Antígeno B7-H1/metabolismo , Antígeno CTLA-4 , Células Supressoras Mieloides/metabolismo , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores/metabolismo
7.
Front Immunol ; 15: 1356869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558800

RESUMO

Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.


Assuntos
Sepse , Linfócitos T Reguladores , Humanos , Células Th17 , Progressão da Doença , Sepse/terapia
8.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591522

RESUMO

Suppressive function of regulatory T cells (Treg) is dependent on signaling of their antigen receptors triggered by cognate self, dietary, or microbial peptides presented on MHC II. However, it remains largely unknown whether distinct or shared repertoires of Treg TCRs are mobilized in response to different challenges in the same tissue or the same challenge in different tissues. Here we use a fixed TCRß chain FoxP3-GFP mouse model to analyze conventional (eCD4) and regulatory (eTreg) effector TCRα repertoires in response to six distinct antigenic challenges to the lung and skin. This model shows highly 'digital' repertoire behavior with easy-to-track challenge-specific TCRα CDR3 clusters. For both eCD4 and eTreg subsets, we observe challenge-specific clonal expansions yielding homologous TCRα clusters within and across animals and exposure sites, which are also reflected in the draining lymph nodes but not systemically. Some CDR3 clusters are shared across cancer challenges, suggesting a response to common tumor-associated antigens. For most challenges, eCD4 and eTreg clonal response does not overlap. Such overlap is exclusively observed at the sites of certain tumor challenges, and not systematically, suggesting transient and local tumor-induced eCD4=>eTreg plasticity. This transition includes a dominant tumor-responding eCD4 CDR3 motif, as well as characteristic iNKT TCRα CDR3. In addition, we examine the homeostatic tissue residency of clonal eTreg populations by excluding the site of challenge from our analysis. We demonstrate that distinct CDR3 motifs are characteristic of eTreg cells residing in particular lymphatic tissues, regardless of the challenge. This observation reveals the tissue-resident, antigen-specific clonal Treg populations.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T Reguladores , Camundongos , Animais , Receptores de Antígenos de Linfócitos T/genética , Peptídeos , Células Clonais
9.
Cell Commun Signal ; 22(1): 215, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570836

RESUMO

More than 80% of patients with myasthenia gravis (MG) are positive for anti-acetylcholine receptor (AChR) antibodies. Regulatory T cells (Tregs) suppress overproduction of these antibodies, and patients with AChR antibody-positive MG (AChR MG) exhibit impaired Treg function and reduced Treg numbers. The gut microbiota and their metabolites play a crucial role in maintaining Treg differentiation and function. However, whether impaired Tregs correlate with gut microbiota activity in patients with AChR MG remains unknown. Here, we demonstrate that butyric acid-producing gut bacteria and serum butyric acid level are reduced in patients with AChR MG. Butyrate supplementation effectively enhanced Treg differentiation and their suppressive function of AChR MG. Mechanistically, butyrate activates autophagy of Treg cells by inhibiting the mammalian target of rapamycin. Activation of autophagy increased oxidative phosphorylation and surface expression of cytotoxic T-lymphocyte-associated protein 4 on Treg cells, thereby promoting Treg differentiation and their suppressive function in AChR MG. This observed effect of butyrate was blocked using chloroquine, an autophagy inhibitor, suggesting the vital role of butyrate-activated autophagy in Tregs of patients with AChR MG. We propose that gut bacteria derived butyrate has potential therapeutic efficacy against AChR MG by restoring impaired Tregs.


Assuntos
Microbioma Gastrointestinal , Miastenia Gravis , Humanos , Receptores Colinérgicos/metabolismo , Linfócitos T Reguladores , Ácido Butírico/farmacologia , Ácido Butírico/metabolismo , Miastenia Gravis/metabolismo , Autoanticorpos/metabolismo
10.
Cytokine ; 179: 156585, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579428

RESUMO

The pathophysiology of several illnesses, including cancer and autoimmune diseasesdepends on human regulatory T cells (Tregs), and abnormalities in these cells may function as triggers for these conditions. Cancer and autoimmune, and gynecological diseases are associated with the differentiation of the proinflammatory T cell subset TH17 and its balance with the production of Treg. Recently, long non-coding RNAs (lncRNAs) have become important regulatory molecules in a wide range of illnesses. During epigenetic regulation, they can control the expression of important genes at several levels by affecting transcription, post-transcriptional actions, translation, and protein modification. They might connect with different molecules, such as proteins, DNA and RNA, and their structural composition is intricate. Because lncRNAs regulatebiological processes, including cell division, death, and growth, they are linked to severaldiseases. A notable instance of this is the lncRNA NEAT1, which has been the subject of several investigations to ascertain its function in immune cell development. In the context of immune cell development, several additional lncRNAs have been connected to Treg cell differentiation. In this work, we summarize current findings about the diverse functions of lncRNAs in Treg cell differentiation and control of the Th17/Treg homeostasis in autoimmune disorders, cancers, as well as several gynecological diseases where Tregs are key players.

11.
Front Immunol ; 15: 1351405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571949

RESUMO

Introduction: The alarmin IL-33 has been implicated in the pathology of immune-mediated liver diseases. IL-33 activates regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2s) expressing the IL-33 receptor ST2. We have previously shown that endogenous IL-33/ST2 signaling activates ILC2s that aggravate liver injury in murine immune-mediated hepatitis. However, treatment of mice with exogenous IL-33 before induction of hepatitis ameliorated disease severity. Since IL-33 induces expression of amphiregulin (AREG) crucial for Treg function, we investigated the immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis. Methods: C57BL/6, ST2-deficient (Il1rl1-/-) and Areg-/- mice received concanavalin A to induce immune-mediated hepatitis. Foxp3Cre+ x ST2fl/fl mice were pre-treated with IL-33 before induction of immune-mediated hepatitis. Treg function was assessed by adoptive transfer experiments and suppression assays. The effects of AREG and IL-33 on ST2+ Tregs and ILC2s were investigated in vitro. Immune cell phenotype was analyzed by flow cytometry. Results and discussion: We identified IL-33-responsive ST2+ Tregs as an effector Treg subset in the murine liver, which was highly activated in immune-mediated hepatitis. Lack of endogenous IL-33 signaling in Il1rl1-/- mice aggravated disease pathology. This was associated with reduced Treg activation. Adoptive transfer of exogenous IL-33-activated ST2+ Tregs before induction of hepatitis suppressed inflammatory T-cell responses and ameliorated disease pathology. We further showed increased expression of AREG by hepatic ST2+ Tregs and ILC2s in immune-mediated hepatitis. Areg-/- mice developed more severe liver injury, which was associated with enhanced ILC2 activation and less ST2+ Tregs in the inflamed liver. Exogenous AREG suppressed ILC2 cytokine expression and enhanced ST2+ Treg activation in vitro. In addition, Tregs from Areg-/- mice were impaired in their capacity to suppress CD4+ T-cell activation in vitro. Moreover, application of exogenous IL-33 before disease induction did not protect Foxp3Cre+ x ST2fl/fl mice lacking ST2+ Tregs from immune-mediated hepatitis. In summary, we describe an immunoregulatory role of the ST2+ Treg/AREG axis in immune-mediated hepatitis, in which AREG suppresses the activation of hepatic ILC2s while maintaining ST2+ Tregs and reinforcing their immunosuppressive capacity in liver inflammation.


Assuntos
Hepatite , Imunidade Inata , Animais , Camundongos , Anfirregulina/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33 , Linfócitos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores
12.
Front Immunol ; 15: 1359933, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562929

RESUMO

T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.


Assuntos
Doenças Autoimunes , Humanos , Doenças Autoimunes/metabolismo , Timo , Timócitos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Ubiquitinação
13.
Pharmacol Res ; 203: 107184, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615874

RESUMO

Inflammatory bowel disease (IBD) is a long-lasting and inflammatory autoimmune condition affecting the gastrointestinal tract, impacting millions of individuals globally. The balance between T helper 17 (Th17) cells and regulatory T cells (Tregs) is pivotal in the pathogenesis and progression of IBD. This review summarizes the pivotal role of Th17/Treg balance in maintaining intestinal homeostasis, elucidating how its dysregulation contributes to the development and exacerbation of IBD. It comprehensively synthesizes the current understanding of how dietary factors regulate the metabolic pathways influencing Th17 and Treg cell differentiation and function. Additionally, this review presents evidence from the literature on the potential of dietary regimens to regulate the Th17/Treg balance as a strategy for the management of IBD. By exploring the intersection between diet, metabolic regulation, and Th17/Treg balance, the review reveals innovative therapeutic approaches for IBD treatment, offering a promising perspective for future research and clinical practice.

14.
Front Pharmacol ; 15: 1349199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601464

RESUMO

Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.

15.
Front Immunol ; 15: 1371089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571964

RESUMO

CD4+ CD25+ FOXP3+ T regulatory cells (Tregs) are a subset of the immunomodulatory cell population that can inhibit both innate and adaptive immunity by various regulatory mechanisms. In hepatic microenvironment, proliferation, plasticity, migration, and function of Tregs are interrelated to the remaining immune cells and their secreted cytokines and chemokines. In normal conditions, Tregs protect the liver from inflammatory and auto-immune responses, while disruption of this crosstalk between Tregs and other immune cells may result in the progression of chronic liver diseases and the development of hepatic malignancy. In this review, we analyze the deviance of this protective nature of Tregs in response to chronic inflammation and its involvement in inducing liver fibrosis, cirrhosis, and hepatocellular carcinoma. We will also provide a detailed emphasis on the relevance of Tregs as an effective immunotherapeutic option for autoimmune diseases, liver transplantation, and chronic liver diseases including liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Linfócitos T Reguladores , Citocinas , Microambiente Tumoral
16.
Front Immunol ; 15: 1331609, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558816

RESUMO

In the genesis and progression of cardiovascular diseases involving both innate and adaptive immune responses, inflammation plays a pivotal and dual role. Studies in experimental animals indicate that certain immune responses are protective, while others exacerbate the disease. T-helper (Th) 1 cell immune responses are recognized as key drivers of inflammatory progression in cardiovascular diseases. Consequently, the CD4+CD25+FOXP3+ regulatory T cells (Tregs) are gaining increasing attention for their roles in inflammation and immune regulation. Given the critical role of Tregs in maintaining immune-inflammatory balance and homeostasis, abnormalities in their generation or function might lead to aberrant immune responses, thereby initiating pathological changes. Numerous preclinical studies and clinical trials have unveiled the central role of Tregs in cardiovascular diseases, such as atherosclerosis. Here, we review the roles and mechanisms of Treg subsets in cardiovascular conditions like atherosclerosis, hypertension, myocardial infarction and remodeling, myocarditis, dilated cardiomyopathy, and heart failure. While the precise molecular mechanisms of Tregs in cardiac protection remain elusive, therapeutic strategies targeting Tregs present a promising new direction for the prevention and treatment of cardiovascular diseases.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Infarto do Miocárdio , Animais , Linfócitos T Reguladores , Doenças Cardiovasculares/terapia , Inflamação
17.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1353-1360, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621983

RESUMO

This study aims to investigate the effect of Xixin Decoction on the T helper 17 cell(Th17)/regulatory T cell(Treg) ba-lance of intestinal mucosa and the expression of related transcription factors in the senescence-accelerated mouse-prone 8(SAMP8) model. Fifty 14-week male mice of SAMP8 were randomized by the random number table method into model group, probiotics group, and high-, medium-, and low-dose Xixin Decoction groups, with 10 mice in each group. Ten 14-week male mice of senescence-acce-lerated mouse-resistant 1(SAMR1) served as control group. After 10 weeks of feeding, the mice were administrated with correspon-ding drugs for 10 weeks. Morris water maze test was carried out to examine the learning and memory abilities of mice. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of secretory immunoglobulin A(SIgA) in the intestinal mucosa, and flow cytometry to detect the percentage content of Th17 and Treg in the intestinal mucosa. Western blot was performed to determine the protein levels of retinoid-related orphan receptor gamma t(RORγt) and forkhead box p3(Foxp3) in the mouse colon tissue. Compared with control group, the escape latency of mice in model group was significantly prolonged(P<0.01), and the number of times of crossing the platform and the residence time in the target quadrant were significantly reduced within 60 s(P<0.01), intestinal mucosal SIgA content was significantly decreased(P<0.01), Th17 content was increased(P<0.05), Treg content was decreased(P<0.01), the expression of RORγt protein was increased and Foxp3 protein was decreased in colon(P<0.01). Compared with the model group, high-dose Xixin Decoction group improved the learning and memory ability(P<0.05 or P<0.01). Probiotics group and high-and medium-dose Xixin Decoction group increased the content of SIgA in intestinal mucosa(P<0.05 or P<0.01), decreased percentage content of Th17 and increased the percentage content of Treg in intestinal mucosa(P<0.05 or P<0.01). Furthermore, they down-regulated the protein level of RORγt and up-regulated the protein level of Foxp3 in the intestinal mucosa(P<0.01). In conclusion, Xixin Decoction may act on intestinal mucosal immune barrier, affect gut-brain information exchange, and improve the learning and memory ability of SAMP8 by promoting SIgA secretion and regulating the Th17/Treg balance and the expression of RORγt and Foxp3.


Assuntos
Linfócitos T Reguladores , Células Th17 , Camundongos , Masculino , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Imunoglobulina A Secretora/farmacologia
18.
Front Endocrinol (Lausanne) ; 15: 1347695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524638

RESUMO

Background and objectives: Hashimoto's thyroiditis (HT), a chronic autoimmune disorder impacting thyroid function, is a growing public health concern. The relationship between Treg cells and HT has been extensively studied, with Treg cells considered crucial in suppressing HT progression. However, these studies have mainly been observational, limiting our understanding of Treg cells' impact on HT risk. Leveraging large datasets, we utilized Mendelian randomization (MR) analysis to examine the causal association between Treg cell biomarkers and HT, providing additional validation for these relationships. Methods: Comprehensive two-sample Mendelian randomization analysis was performed to determine the causal association between Treg cells signatures and HT in this study. Based on publicly available genetic data, we explored causal associations between 165 Treg cells signatures and HT risk. Results: The European cohort study has identified five Treg cell phenotypes that causally protect against HT risk. Resting Treg %CD4 (OR = 0.975, 95% CI = 0.954~0.998, P = 0.030); CD4 on resting Treg (OR = 0.938, 95% CI = 0.882~0.997, P = 0.041; CD28- CD8dim %CD8dim (OR = 0.983, 95% CI = 0.969~0.998, P = 0.030); CD25 on CD39+ resting Treg (OR = 0.926, 95% CI = 0.864~0.991, P = 0.026); 5) CD28 on activated & secreting Treg (OR = 0.969, 95% CI = 0.942~0.996, P = 0.025). The Asian cohort study has identified four Treg cell phenotypes negatively correlated with the risk of HT. CD25hi %T cell (OR = 0.635, 95% CI = 0.473~852, P = 0.002); CD4 Treg %CD4 (OR = 0.829, 95% CI = 0.687~1.000, P = 0.050); CD127-CD8br %T cell (OR = 0.463, 95% CI =0.311~0.687, P< 0.001); CD3 on resting Treg (OR = 0.786, 95% CI = 0.621~0.994, P = 0.044). Conclusion: Our study has demonstrated the close connection between Treg cells and HT by genetic means, thus providing foundational basis for future research.


Assuntos
Doença de Hashimoto , Linfócitos T Reguladores , Humanos , Fatores de Proteção , Antígenos CD28 , Estudos de Coortes , Análise da Randomização Mendeliana , Doença de Hashimoto/genética
19.
Biomed Pharmacother ; 174: 116440, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518605

RESUMO

Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.

20.
Cytotherapy ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38520411

RESUMO

BACKGROUND AIMS: Rheumatoid arthritis (RA) is characterized by an overactive immune system, with limited treatment options beyond immunosuppressive drugs or biological response modifiers. Human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) represent a novel alternative, possessing diverse immunomodulatory effects. In this study, we aimed to elucidate the therapeutic effects and underlying mechanisms of hESC-MSCs in treating RA. METHODS: MSC-like cells were differentiated from hESC (hESC-MSCs) and cultured in vitro. Cell proliferation was assessed using Cell Counting Kit-8 assay and Ki-67 staining. Flow cytometry was used to analyze cell surface markers, T-cell proliferation and immune cell infiltration. The collagen-induced arthritis (CIA) mouse model and bleomycin-induced model of lung fibrosis (BLE) were established and treated with hESC-MSCs intravenously for in vivo assessment. Pathological analyses, reverse transcription-quantitative polymerase chain reaction and Western blotting were conducted to evaluate the efficacy of hESC-MSCs treatment. RESULTS: Intravenous transplantation of hESC-MSCs effectively reduced inflammation in CIA mice in this study. Furthermore, hESC-MSC administration enhanced regulatory T cell infiltration and activation. Additional findings suggest that hESC-MSCs may reduce lung fibrosis in BLE mouse models, indicating their potential to mitigate complications associated with RA progression. In vitro experiments revealed a significant inhibition of T-cell activation and proliferation during co-culture with hESC-MSCs. In addition, hESC-MSCs demonstrated enhanced proliferative capacity compared with traditional primary MSCs. CONCLUSIONS: Transplantation of hESC-MSCs represents a promising therapeutic strategy for RA, potentially regulating T-cell proliferation and differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...